
Place	brackets	to	clarify	the	interpretation	of	the	following	ProVerif	process:(a)
! in(net,x) ; in(net,y) | in(net,z) ; out(net,q)

[! {in(net,x) ; in(net,y)}] | {in(net,z) ; out(net,q)}

Note	that	it	must	be	the	case	that	the	bang	(i.e.	!)		refers	to	everything	on	the	left-hand	side	of	the	|;	!
indicates	that	an	infinite/arbitrary	number	of	processes	may	run	in	parallel.	This	process	in	its	entirety	does	
not	make	sense	when	something	runs	after	the	conclusion	of	the	infinite/arbitrary	number	of	processes.	
Furthermore,	we	have	that	! binds	stronger	than	|.

Translating	between	SPI	and	ProVerif	(and	vice	versa)(b)
SPI ProVerif	equivalent

inp net x; stop in(net,x).

P(x,y)== … private free icP. … let P = in(icP, (x,y)); …
...P(x,y)... private free icP. … out(icP, (x,y)); P …

ProVerif SPI	equivalent

in(net, (A,=B)). inp net x; split x is (A, x2); if x2=B then stop

let (=A,B,=M) = x in ... split x in (x1, B, x3); if x1=A then if x3=M then …
query attacker: s (secret(s)|system)

where system is the overall process being checked

replace all occurrences of new s; Q by new s;
(secret(s)|Q) and check for safety for robust secrecy
If s is free in the process, add |secret(s) to the
whole process

For	the	latter	two,	an	initialization	
channel	icP needs	to	be	defined.	
This	channel	is	used	to	input	
values	into	a	process's	variables.

Effectively,	we	are	first	(in	the	last	
line)	placing	values	on	this	
channel,	to	then	immediately	read	
them	upon	actually	creating	the	
process	(in	the	middle	line).

Note	that	this	channel	is	
specifically	used	for	this	(single)	
process,	so	that	the	values	are	
guaranteed	to	end	up	in	the	
'called'	process.

Exercise	17
donderdag	16	februari	2023 20:27

